

SMART CHARGING AND DISCHARGING OF EVS VEHICLE-GRID INTEGRATION SUMMIT

Vehicle-to-load (V2L/V2V)

- Main customer benefits
 - TCO reduction
 - Increase EV product attractiveness

	Schema	Technological solutions	Functionalities
V1G Smart charge	On-board charger ISO/ICE 15118 IEC 61851	IEC 61851 Over the air commands ISO IEC 15118 ed 1	Smart charging with control either done by the EV or delegating to an off board agent
V2G DC	CCS + ISO/ICE 15118 CHADEMO V2G	Bidirectional V2G DC EVSE ISO / IEC 15118 ed2 CHAdeMO	Smart charge + bidirectional power flow in DC
V2G AC	ISO/ICE 15118	Bidirectional OBC + compatible V2G AC EVSE ISO IEC 15118 ed2	Smart charge + bidirectional power flow in AC

Component level

V2G AC Charger exploration

Strong relation ship with EVSE vendor (V2G DC CCS and CHAdeMO)

Academic partnership

Technical bricks

SI Smart Grid = Bidirectional On Board Charger + Wall Box + DC Charger + Battery Ageing Impact

IT Architecture & HMI + EVSE improved communication

- The car needs to be integrated into an ecosystem to generate value
 - HMI: collect customer needs & provide feed back
 - IT Interface with secondary actors (Energy provider & CPO, ...)
 - Improved communication / Embedded Algorithme

- Objectives :
 - Build the complete value chain for revenue evaluation of V1G & V2G and costumer acceptancy,
 - BM and marketing prospective,
 - First real life project in France,

FORSEE

Re-Lab Second-life life battery demonstrator

Integration of 2nd Life Batteries in micro grid with local EV 4 charging plugs, 12kW PVs. V2G CHAdeMO charger for cycling 2nd Life Battery.

Example of project : E-Mobility-LAB Hessen

>160 Charging points deployed in Russelsheim R&D center (DE)

V1G with investment reduction objective, cost management

Charging profile, parking and mobility Academic survey (learning, with real life, on the field activity)

PERSPECTIVES

- PSA Groupe experienced V2G application with current EV Product, Paving the way to commercial deployment for next generation EV
- Different technological brick are addressed to be able to proposed adaptive solutions for User (B2C or B2B)
- Ecosystem approach is mandatory for successful service rollout
- Regulation and standards should be adapted.
- Does the revenue perspective link to energy market and taxes (substitute to fossil fuel incomes) will allow robust business model?
- Complete valorization of battery (V2G + 2nd life + recycling) must be addressed.

Questions?

