Is V2G a profitable Business?

Jens Christian Morell Lodberg Høj, Insero

- What is the potential on revenue and profit in Denmark?
- What does it take to scale?
- Which other countries have a V2G potential?

- Calculations focus on one specific service – FCR-N
- Based on figures from 2017
- Shows full potential of V2G service
- Average fleet approach
- Calculations are only made on DK2

- Grid related data
- Car related data
- Charger related data
- Market related data

Formula symbol	Variable	Unit	Single calculation	
Sync	Synchronous area		DK2	
Mept	Market entry power threshold	kW	300	
EvFleet	EV fleet	units	10	
CmxPw	Charger max power	kW/EV	10	
BatCap	Battery capacity (usable)	kWh	21	
EVmil	EV Mileage	km/month	250	
EVee	EV Energy efficiency	kWh/100km	18	
MxUdirEnEx	Max unidirectional energy exchange (% of Charger max power)	%	30%	
ChEngPr	Charger energy production	kWh/EV/month	350	
ChEngLos	Charger energy loss	%	30%	
ElConPro	Electricity consumption price	DKK/kWh	1,00	
EIProPro	Electricity production price	DKK/kWh	0,20	
BatFcrW	Battery FCR-related wear	DKK/year	0	
ChDeprec	Charger (bi-direc additional cost) depreciation	DKK/year	0	
FcPC	FCR-N price change factor for sensitivity analysis	%/year	0,0%	
SocOfsWd	SOC offset for sensitivity analysis, weekdays	%-points	0,0	
SocOfsWe	SOC offset for sensitivity analysis, weekends	%-points	0,0	

468 2,304

-955

3 Scenarios have been developed

- Reference
 - The Frederiksberg Forsyning case
- Best Case
 - Larger batteries
 - More powerfull and efficient chargers
 - Net meetering allowed
 - No surplus cost to charger
 - Battery degradation non existing
- Worst Case
 - Frederiksberg Forsyning case, however

And in €

- Electricity consumption price rises
- Reduced charger power
- Battery wear of 3% p.a.
- Additional charger price of 2.500 €

Variable	Unit	Reference Scenario	Best case	Worst case	
EV fleet	units	10	10	10	
Charger max power	kW/EV	10	20	6,6	
Battery capacity (usable)	kWh	21	60	21	
EV Mileage	km/month	250	250	250	
EV Efficiency	kWh/100km	18	12,5	18	
Max unidirectional energy exchange (% of Charger max power)	%	20%	10%	30%	
Charger energy production	kWh/EV/month	350	350	350	
Charger energy loss	%	30%	10%	30%	
Electricity consumption price	DKK/kWh	1,00	0,70	1,40	
Electricity production price	DKK/kWh	0,20	0,70	0,20	
Battery FCR-related wear	DKK/kWhUp	0	0	1.200	
Charger (bi-direc additional cost) depreciation	DKK/year	0	0	4.000	
FCR-N price change factor for sensitivity analysis	%/year	0,0%	0	(
SOC offset for sensitivity analysis, weekdays	%-points	0,0	0,0	0,0	
SOC offset for sensitivity analysis, weekends	%-points	0,0	0,0	0,0	
Profit/EV/Year	DKK	3.495	17.187	-7.128	

Market place ready

Value system in place

Viable business case in place

Customers ready

Supply chain ready

- The market structure is defined by 7 variables
- These impact 4 main factors
- Evaluation of these can point to the most interesting markets to approach
- In general, most countries are harmonizing their market structure
 - Central Europe is one zone
 - Nordic is another zone
 - Great Britain is a third zone
- Primary differentation point is the EV penetration
- Other parameters to take into consideration
 - Electricity prices buying and selling
 - Availability payment level
 - Energy need/Power availability

Jens Christian Morell Lodberg Høj Chief Innovator, Mobility

@: jclh@insero.com

2: +45 4112 5558

Insero A/S Chr. M. Østergaards Vej 4a 8700 Horsens

