

Managing the distribution grid: what's the limit?

21/11/2018

Lisa Calearo, Research Assistant

Center for Electric Power and Energy
DTU Risø Campus

DTU Electrical Engineering

Department of Electrical Engineering

- Introduction
- Study cases LV grids
- Electric vehicle (EV) charging pattern model
- Technical analysis and results
- Economic analysis and results
- Conclusions and future work

Introduction

The electric vehicle (EV) market is growing

DSO concern regarding grid operation:

- Loading issues
- Voltage issues

How can EVs be actively integrated in the electrical power distribution network maximizing the benefits for system, aggregator and user?

Bornholm LV grids: Tejn and Rønne

modelling and analysis of current situation

EV charging pattern modelling

EV penetration in Tejn and Rønne grids: technical and economic analyses

Study cases: LV grids

Based on the island consumption, Tejn and Rønne have characteristics, representative of the distribution grids in Bornholm.

No EVs – base case scenario Tejn

400 kVA

Transformer/cable loading:

No transformer/cable overloading

Most loaded cables:

Tejn: cable "St-10058"Rønne: cable "St-2332"

Voltage analysis:

No under-voltage values (<0.9 p.u.)

Most critical terminals:

Tejn: terminal 4379Rønne: terminal 2352

Rønne

Unbalanced grid

Mean distribution: 42% phase a, 33% phase b, 25% phase c. Rønne feeder has similar characteristics.

→ Assumed load: 40% in phase a, 30% in phase b, 30% in phase c.

 historical driving characteristics of private conventional vehicles from Denmark

up	Distance x [km/day]	25 [%] 20 21 15		G2	G3	34		 34	km/day:	per km/ average average	e Bornh	olm	
1	$0 < x \le 10$	of of	G1 -				G6 55					_	
2	$10 < x \leq 20$	Share 5	_					G7	G	8 с	69	C10	
3	$20 < x \le 30$	0	0 1	0 20	30	40	50	70	90	110	130	G10 150	
4	$30 < x \le 40$				Α	vera	ige dist	ance d	riven [l	km/day]	l		
_	40 4 70												

home plug-in behavior of EVs from Japan

Evs: 40 kWh battery capacity

EV charging pattern result

- Single-phase chargers (3.7 kW): max 40-45% EVs charging together
- Three-phase chargers (11.1 kW): max 20-25% EVs charging together
- Higher rated power of the chargers → less EVs charging at same time, but higher peak consumption.

Example with 127 EVs (127 households in Tejn \rightarrow 100% EV penetration):

What are the impacts of different penetration levels of EVs on the distribution networks of Bornholm?

Single-phase chargers

Transformer loading:

Voltage analysis:

100% EV penetration:

- single-phase chargers (Ch-1ph)
- three-phase chargers (Ch-3ph)

Transformer loading:

	Transformer loading						
	Tejn		Røn	ne			
	mean max		mean	max			
	[%]	[%]	[%]	[%]			
Ch-1ph	41.4	93.5	27.2	70.5			
Ch-3ph	40.8	120	28.0	99.5			
†							
	9.25 h						

Voltage analysis:

Cable loading:

Rønne: 2352

Which value can the EVs, as a flexible active component of the distribution system network, create for the system? How should it be remunerated?

Voltage issues → EV active power modulation

Congestion issues:

- \rightarrow ES1: DSO approach to transformer/cables overloading \rightarrow new upgraded transformer/cables
- → ES2: new approach to transformer/cables overloading → **EV support service:** DSO is allowed by the EV owners to change the active power consumption

Economic scenario comparison

Replacement/upgrade transformer (400→630) and two cables:

Total investment: CAPEX = 319500 DKK + 69218 DKK = 388718 DKK

Economic scenario: Tejn

- Tejn and Rønne, representative distribution grids of Bornholm, without EVs do not present congestion and voltage issues
- EV charging pattern model:
 - single-phase chargers → 40-45% EVs charge together
 - three-phase chargers → 20-25% EVs charge together
 - → max active power consumption is higher with three-phase
- EVs connected with single-phase chargers:
 - → under-voltage values, issues only with 100% penetration
 - → solution: EV active power modulation

- EVs connected with three-phase chargers:
 - → congestion issues with 100% penetration
 - → solution: 1. components upgrade → investment: 388718 DKK
 → cost-effective with many and long overloading periods
 - 2. EV support service → available ~190 DKK/week
 - → ~77 DKK/y per customer
 - → preferable with few and short overloading periods
 - → less need of EV support means higher remuneration

- Loading impact of V2G
- Plug-in rate at workplace
- Impact of fast chargers

Thanks for your attention!

DTU

Household consumption analysis

Analyzed weeks:

- Week 7: 12th to 18th February → normal winter week
- Week 9: 26th February to 4th March → the "Siberian cold"

The following analysis considers **week 9** assuming:

- $cos(\Phi) = 0.966$ (derived from Ecogrid data)
- Load split on the 3 phases: 40%-30%-30% (derived from SGU data).

Simple approach example

- LV distribution grid with 400 kVA MV/LV transformer
- 110 householders
- EVs penetration levels: 25%-50%-75%-100% → 110 EVs with 100% penetration
- Plug-in time 17:00 for all EVs
- Average of 35 km/day

Fast chargers

Unknown consumption week 9.

Charging pattern is designed as follows:

- 10 pm 4 am: Evs are used for frequency regulation
- 4 am 6 am: EVs are charged → average driven distance 80 km/day
 6 am Evs have to be fully charged
- 6 am 10 pm: EVs are driven → power equal to zero.

Ch-1ph: no control/P control

Transformer loading:

	Transformer loading				
	Tejn		Rø nne		
	mean max		mean	max	
	[%]	[%]	[%]	[%]	
Ch-1ph	41.4	93.5	27.2	70.5	
P control	40.8	88.6	27.0	68.8	

Voltage analysis:

Ch-1ph: balanced/unbalanced

Transformer loading:

Tejn	Ronne		
$\mathbf{S_{max}}$	S_{max}		
[%]	[%]		
93.4	70.5		

68.7

Cable loading:

	$Cable\ loading$						
	Tejn: St-10058		Tejn: St-10120		Rønne: St-2338		
	mean	max	mean	max	mean	max	
	[%]	[%]	[%]	[%]	[%]	[%]	
Balanced	36.0	91.6	24.5	68.0	27.4	79.6	
Unalanced	36.1	84.8	31.2	113	29.5	93.5	

Voltage analysis:

94.7

 $\frac{Balanced}{Unbalanced}$

Effect of the ToU tariffs: plug-in time all EVs at 20

EV owners perspective: 0.5 DKK/kWh less if charging after 20

→ Total savings per year approx. 310-550 DKK...

Transformer loading:

	$Transformer\ loading$				
	$T\epsilon$	ejn	Ro	nne	
	max time		max	time	
	[%]	[h]	[%]	[h]	
Ch-1ph	93.4	0	73	0	
Ch-3ph	201	10.8	162	9.83	

Cable loading:

	$Cable\ loading$						
	Tejn:	St-10058	Ronne: St-2338				
	max	time	max	time			
	[%]	[h]	[%]	[h]			
Ch-1ph	106	2	85.9	0			
Ch-3ph	199	9.75	161	9.82			

Voltage analysis:

...**DSO** perspective→ Congestion,low-voltage values